找回密碼
 註冊
查看: 906|回覆: 5

Rechargeable flow battery enables cheaper, large-scale energy storage

[複製鏈接]
簽到
2909
發表於 2013-8-24 23:15:42 | 顯示全部樓層 |閱讀模式

登入後,內容更豐富

您需要 登錄 才可以下載或查看,沒有賬號?註冊

×
本帖最後由 jgyjgw 於 2013-8-24 23:16 編輯


                               
登錄/註冊後可看大圖


Massachusetts Institute of Technology (MIT) researchers have engineered a new rechargeable flow battery that doesn’t rely on expensive membranes to generate and store electricity. The device, they say, may one day enable cheaper, large-scale energy storage.

The palm-sized prototype generates three times as much power per square centimeter as other membraneless systems—a power density that is an order of magnitude higher than that of many lithium-ion batteries and other commercial and experimental energy-storage systems.

The device stores and releases energy in a device that relies on a phenomenon called laminar flow: Two liquids are pumped through a channel, undergoing electrochemical reactions between two electrodes to store or release energy. Under the right conditions, the solutions stream through in parallel, with very little mixing. The flow naturally separates the liquids, without requiring a costly membrane.

The reactants in the battery consist of a liquid bromine solution and hydrogen fuel. The group chose to work with bromine because the chemical is relatively inexpensive and available in large quantities, with more than 243,000 tons produced each year in the U.S.

In addition to bromine’s low cost and abundance, the chemical reaction between hydrogen and bromine holds great potential for energy storage. But fuel-cell designs based on hydrogen and bromine have largely had mixed results: Hydrobromic acid tends to eat away at a battery’s membrane, effectively slowing the energy-storing reaction and reducing the battery’s lifetime.

To circumvent these issues, the team landed on a simple solution: Take out the membrane.

“This technology has as much promise as anything else being explored for storage, if not more,” says Cullen Buie, an asst. prof. of mechanical engineering at MIT. “Contrary to previous opinions that membraneless systems are purely academic, this system could potentially have a large practical impact.”


                               
登錄/註冊後可看大圖


Buie, along with Martin Bazant, a prof. of chemical engineering, and William Braff, a graduate student in mechanical engineering, have published their results in Nature Communications.

“Here, we have a system where performance is just as good as previous systems, and now we don’t have to worry about issues of the membrane,” Bazant says. “This is something that can be a quantum leap in energy-storage technology.”

Possible boost for solar and wind energy
Low-cost energy storage has the potential to foster widespread use of renewable energy, such as solar and wind power. To date, such energy sources have been unreliable: Winds can be capricious, and cloudless days are never guaranteed. With cheap energy-storage technologies, renewable energy might be stored and then distributed via the electric grid at times of peak power demand.

By designing a flow battery without a membrane, Buie says the group was able to remove two large barriers to energy storage: cost and performance. Membranes are often the most costly component of a battery, and the most unreliable, as they can corrode with repeated exposure to certain reactants.

Braff built a prototype of a flow battery with a small channel between two electrodes. Through the channel, the group pumped liquid bromine over a graphite cathode and hydrobromic acid under a porous anode. At the same time, the researchers flowed hydrogen gas across the anode. The resulting reactions between hydrogen and bromine produced energy in the form of free electrons that can be discharged or released.

The researchers were also able to reverse the chemical reaction within the channel to capture electrons and store energy—a first for any membraneless design.

In experiments, Braff and his colleagues operated the flow battery at room temperature over a range of flow rates and reactant concentrations. They found that the battery produced a maximum power density of 0.795 W of stored energy per square centimeter.

More storage, less cost
In addition to conducting experiments, the researchers drew up a mathematical model to describe the chemical reactions in a hydrogen-bromine system. Their predictions from the model agreed with their experimental results—an outcome that Bazant sees as promising for the design of future iterations.

According to preliminary projections, Braff and his colleagues estimate that the membraneless flow battery may produce energy costing as little as $100 per kilowatt-hour—a goal that the U.S. Dept. of Energy has estimated would be economically attractive to utility companies.

http://www.rdmag.com/news/2013/0 ... ale-energy-storage?
發表於 2013-8-25 09:19:00 | 顯示全部樓層
jgyjgw 發表於 2013-8-24 23:15
Massachusetts Institute of Technology (MIT) researchers have engineered a new rechargeable flow ba ...

0.795W/sq cm 系好高,一塊面積約8cm手機電,
已經有6W,即6000mW,可想而知。
唯一未知系量的問題,因為儲存量還有一個參數:
維持一小時的電力,要多厚電極? 扶助裝置又有多大?
厚度乘面積=體積, 而power乘時間才是energy (WH)

儲能量/體積比率,才是更重要參數。 (文內沒說到?)
回覆 讚好 不讚 使用道具

舉報

發表於 2013-8-25 09:22:09 | 顯示全部樓層
Bromic acid, 腐蝕性極强的酸。
怎樣安全處理產品例如維修他日廢品處理也是要研究的
回覆 讚好 不讚 使用道具

舉報

發表於 2013-8-25 16:50:53 | 顯示全部樓層
之前個Redox電池用薄膜,
呢個又話唔駛!
邊個好啲?
邊個真係幫到solar/wind電力儲存呢?
回覆 讚好 不讚 使用道具

舉報

 樓主| 發表於 2013-8-26 08:26:06 | 顯示全部樓層
而家用的鋰其實亦系好危險物質. 我去過廠睇過. 鋰一觸些小水气,就立刻變,所以會爆炸.
比腐蝕極强酸危險得多. 但已成世界普用東西.
但今日的電池仍唔夠用一日兩日吧.

但我覺得長遠看, 這類先進電池用薄膜科板, 對汔車/電單車 更有用!
回覆 讚好 不讚 使用道具

舉報

發表於 2013-8-26 08:47:57 | 顯示全部樓層
jgyjgw 發表於 2013-8-26 08:26
而家用的鋰其實亦系好危險物質. 我去過廠睇過. 鋰一觸些小水气,就立刻變,所以會爆炸.
比腐蝕極强酸危險得多 ...

某類物質,轉態釋出能量高者,必然是好能源。
能否有效控制釋出秩序,是用不用得著關鍵,
能否逆轉,則決定了可否作儲能裝置蓄電池用
回覆 讚好 不讚 使用道具

舉報

您需要登錄後才可以回帖 登錄 | 註冊

本版積分規則

Archiver|聯絡我們|141華人社區

GMT+8, 2024-4-24 14:23

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回覆 返回頂部 返回列表